VERTEX COVERS BY EDGE DISJOINT CLIQUES

TOM BOHMAN*, ALAN FRIEZE[†], MIKLÓS RUSZINKÓ[‡], LUBOS THOMA[§]

Dedicated to the memory of Paul Erdős

Received October 31, 1999

Let H be a simple graph having no isolated vertices. An (H,k)-vertex-cover of a simple graph G = (V, E) is a collection H_1, \ldots, H_r of subgraphs of G satisfying

- 1. $H_i \cong H$, for all $i = 1, \ldots, r$,
- 2. $\bigcup_{i=1}^{r} V(H_i) = V$,
- 3. $E(H_i) \cap E(H_i) = \emptyset$, for all $i \neq j$, and
- 4. each $v \in V$ is in at most k of the H_i .

We consider the existence of such vertex covers when H is a complete graph, $K_t, t \ge 3$, in the context of extremal and random graphs.

1. Introduction

Let H be a simple graph having no isolated vertices. For the purposes of this discussion we say that the simple graph G = (V, E) has property $C_{H,k}$ if there is a collection H_1, \ldots, H_r of subgraphs of G satisfying

- P1. $H_i \cong H$, for all $i = 1, \ldots, r$,
- $P2. \cup_{i=1}^{r} V(H_i) = V,$
- P3. $E(H_i) \cap E(H_j) = \emptyset$, for all $i \neq j$, and

Mathematics Subject Classification (2000): 05C80, 05C35

^{*} Supported in part by NSF grant DMS-9627408.

[†] Supported in part by NSF grant CCR-9530974.

 $^{^{\}ddagger}$ Supported in part by OTKA Grants T 030059 and T 29074, FKFP 0607/1999 and by the Bolyai Foundation.

[§] Supported in part by NSF grant DMS-9970622.

P4. each $v \in V$ is in at most k of the H_i .

We call the family $\{H_1, \ldots, H_r\}$ an (H, k)-vertex-cover of G. Thus when k=1 we ask for the existence of a partition of V into vertex disjoint copies of H i.e. the existence of an H-factor. In this case we assume the necessary divisibility condition, i.e. that |V(H)| divides |V|. We study this property when G is a random graph and also when G is extremal w.r.t. minimum degree. We will mainly focus on the case where H is a complete graph K_t and denote our property by $C_{t,k}$.

Random graphs

The precise threshold for the occurrence of $C_{2,1}$ i.e. the existence of a perfect matching was found by Erdős and Rényi [8] as part of a series of papers which laid the foundations of the theory of random graphs. The precise threshold for the occurrence of $C_{3,1}$ i.e. the existence of a vertex partition into triangles remains as one of the most challenging problems in this area (see, for example, the Appendix by Erdős to the monograph by Alon and Spencer [1]).

The thresholds for H-factors have been studied for example by Ruciński [17], by Alon and Yuster [3] and by Krivelevich [13]. For a graph H, let

$$m_1(H) = \max\left(\frac{|E(H')|}{|V(H')| - 1}\right)$$

where the maximum is taken over all subgraphs H' of the graph H with at least two vertices. Ruciński showed that the probability $p(n) = O(n^{-1/m_1(H)})$ is a sharp threshold for the property $\mathcal{C}_{H,1}$ for any graph H such that $m_1(H) > \delta(H)$ where $\delta(H)$ stands, as usual, for the minimum degree of the graph H [17]. Note that complete graphs do not satisfy this condition, and therefore the first interesting open case is $H = K_3$. Alon and Yuster showed that $p(n) = O(n^{-1/m_1(H)})$ is a sharp threshold for the property $\mathcal{C}_{H,1}$ for a more general class of graphs that does not contain the complete graphs [3]. In [13], Krivelevich showed that the probability $p(n) = O(n^{-3/5})$ is enough for the random graph to have a K_3 -factor \mathbf{whp}^1 and, in general, if $p(n) = O(n^{-2t/(t-1)(t+2)})$ then the random graph $G_{n,p}$ contains a K_t -factor \mathbf{whp} (provided t divides n).

An obvious necessary condition for the existence of a (K_t,k) -vertex-cover is that every vertex be incident with at least one copy of K_t .

¹ A sequence of events \mathcal{E}_n occurs with high probability, whp, if $\Pr(\mathcal{E}_n) = 1 - o(1)$.

Theorem 1. Let $m = \binom{n}{2}((t-1)!(\log n + c_n))^{1/\binom{t}{2}}n^{-2/t}$. Then

$$\lim_{n \to \infty} \mathbf{Pr}(G_{n,m} \text{ contains a } (K_t, 2)\text{-vertex-cover}) = \begin{cases} 0 & c_n \to -\infty \\ e^{-e^{-c}} & c_n \to c \\ 1 & c_n \to \infty \end{cases}$$

(Here, $G_{n,m}$ stands for the probability space over the set of all graphs on n vertices and with m edges endowed with the uniform probability measure.) We will prove this as a consequence of the slightly stronger hitting time version. We consider the graph process $G_m = ([n], E_m), m = 0, 1, \ldots, \binom{n}{2}$, where $E_0 = \emptyset$ and G_m is obtained from G_{m-1} by choosing e_m randomly from $\binom{[n]}{2} \setminus E_{m-1}$ and putting $E_m = E_{m-1} \cup \{e_m\}$. We define two hitting times:

 $\tau_1 = \tau_1(t) = \min\{m : \text{ Every } v \in [n] \text{ is contained in a copy of } K_t \text{ in } G_m\}$, $\tau_2 = \tau_2(t) = \min\{m : G_m \text{ contains a } (K_t, 2)\text{-vertex-cover}\}.$

Theorem 2. For every fixed $t \ge 3$,

$$\lim_{n\to\infty} \mathbf{Pr}(\tau_1 = \tau_2) = 1.$$

Moreover, there exists whp a $(K_t, 2)$ -vertex-cover of G_{τ_2} containing $(1 + o(1))\frac{n}{t}$ copies of K_t .

Remark 1. In fact, our proof of Theorem 2 implies that G_{τ_2} possesses whp a $(K_t, 2)$ -vertex-cover containing at most $\left(\frac{1}{t} + \frac{1}{(\log n)^{1/t}}\right)n$ copies of K_t .

Remark 2. Theorem 2 lends weight to the common conjecture that the threshold for a K_t -factor is m of Theorem 1.

We prove Theorem 2 in Section 2 and show how Theorem 1 follows from Theorem 2 in Section 3.

Extremal graphs

For a graph G on n vertices what is the smallest minimum degree that insures G has $C_{t,k}$? For $t \ge 3$ and $k \ge 2$ let

$$f(n,t,k) = \max\{d : \exists G \text{ such that } \delta(G) = d, |V(G)| = n \text{ and } G \notin \mathcal{C}_{t,k}\}.$$

We will assume that n is large with respect to t, but k can be arbitrarily large. The smallest minimum degree that guarantees a K_t -factor (this would be, up to divisibility considerations, f(n,t,1)+1) was established in the following deep theorem of Hajnal and Szemerédi [10].

Theorem 3 (Hajnal, Szemerédi). If |V(G)| = n and $\delta(G) \ge (1 - \frac{1}{t})n$ then G contains |n/t| vertex-disjoint copies of K_t .

Our central result in this section is the following:

Theorem 4. Let $t \ge 3$, $k \ge 2$, $n \ge 6t^2 - 4t$ and

$$n = q[(t-1)k+1] + r$$
 where $1 \le r \le (t-1)k+1$.

Then

$$n - qk - \left\lceil \frac{r}{t-1} \right\rceil \le f(n,t,k) \le n - qk - \left\lceil \frac{r}{t-1} \right\rceil + 1$$
.

Note that it follows from Theorem 4 that

(1)
$$f(n,t,k) = \left| \frac{[(t-2)k+1]n}{(t-1)k+1} \right| + c$$

where $c \in \{0,1,2\}$. It is tempting to believe that f(n,t,k) equals the lower bound given in Theorem 4. This is not the case in general.

Theorem 5. Let $n \ge 6$ and $k \ge (n-1)/2$.

$$f(n,3,k) = \left\lceil \frac{n}{2} \right\rceil.$$

Note that the value of f(n,3,k) given in Theorem 5 equals the lower bound in Theorem 4 for n even, but equals the upper bound for n odd. (Here q=0 and r=n).

For H a simple graph with no isolated vertices and G an arbitrary graph an (H,∞) -vertex-cover of G is a collection H_1,\ldots,H_r of subgraphs of G satisfying P1, P2 and P3. Thus, G has an (H,∞) -vertex-cover if and only if there exists a k such that G has a (H,k)-vertex-cover. To motivate our results on (H,∞) -vertex-covers, we recall the following well-known extension of Theorem 3. Given an arbitrary graph H, Komlós, Sárközy and Szemerédi [15] showed that there is a constant c (depending only on the graph H) such that if $\delta(G) \geq \left(1 - \frac{1}{\chi(H)}\right)n$ for a graph G on n vertices, then there is a union of vertex-disjoint copies of H covering all but at most c vertices of G. Weakening the condition on $\delta(G)$ we show in the following theorem the existence of (H,∞) -vertex-covers for graphs H having the property that there is a vertex u of H such that $\chi(H \setminus \{u\}) = \chi(H) - 1 \geq 3$.

Theorem 6. Let H be a graph such that $\chi(H) \ge 4$ and such that there is a vertex u of H with the property that $\chi(H \setminus \{u\}) = \chi(H) - 1$. Then for every $\epsilon > 0$ and every graph G on n vertices, if $\delta(G) \ge \left(1 - \frac{1}{\chi(H) - 1} + \epsilon\right)n$, then G has an (H, ∞) -vertex-cover provided n is large enough.

Theorems 4, 5 and 6 are proved in Section 4.

2. Proof of Theorem 2

In this section we will use the following Chernoff bounds on the tails of the binomial random variable B(n,p). For $0 \le \epsilon \le 1$ and $\theta > 0$

(2)
$$\mathbf{Pr}(B(n,p) \le (1-\epsilon)np) \le e^{-\epsilon^2 np/2}$$

(3)
$$\mathbf{Pr}(B(n,p) \ge (1+\epsilon)np) \le e^{-\epsilon^2 np/3}$$

(4)
$$\mathbf{Pr}(B(n,p) \ge \theta np) \le (e/\theta)^{\theta np}$$

All Lemmas introduced in this section will be proven in the subsections that follow.

Let $t \ge 3$ be fixed. We construct a $(K_t, 2)$ -vertex-cover in G_m by dividing our graph process into 3 phases and using edges from different phases for different purposes. Before describing the phases, we make some preliminary definitions and the observation that we may restrict our attention to G_m where m lies in a small interval. Let $\alpha, \beta > 0$ be constants such that

$$\beta^{\binom{t}{2}} > 19/20$$
 and $\alpha + \beta < 1$,

and let

$$m_a = \alpha \binom{n}{2} \left((t-1)! \log n \right)^{1/\binom{t}{2}} n^{-2/t}$$
, and $m_b = \beta \binom{n}{2} \left((t-1)! \log n \right)^{1/\binom{t}{2}} n^{-2/t}$.

Furthermore, for i=0,1 let

$$m_i = \binom{n}{2} ((t-1)!(\log n - (1-2i)\log\log n))^{1/\binom{t}{2}} n^{-2/t}.$$

Lemma 1.

$$\mathbf{Pr}(\tau_1 \notin [m_0, m_1]) = o(1) .$$

We will use the term 'a collection of K_t 's' in the graph G, for a family $A \subseteq \binom{V(G)}{t}$ such that G[S] is complete for all $S \in \mathcal{A}$. For such a collection \mathcal{A} we set

(5)
$$V(\mathcal{A}) = \bigcup_{S \in \mathcal{A}} S \quad \text{and} \quad E(\mathcal{A}) = \bigcup_{S \in \mathcal{A}} {S \choose 2},$$

say \mathcal{A} 'covers' a vertex v if $v \in V(\mathcal{A})$, and say \mathcal{A} 'covers' a set of vertices T if $T \subseteq V(\mathcal{A})$.

We are now ready to describe the 3 phases. In the first phase we simply choose m_a edges uniformly at random, producing the graph $G^1 = ([n], E^1)$. Thus,

$$G^1 = G_{n,m_a}.$$

In the second phase we form the graph $G^2 = ([n], E^2)$ by choosing m_b edges uniformly at random. This is done independently of phase 1 and without knowledge of which edges were placed in phase 1. Thus,

$$G^2 = G_{n,m_b},$$

and a particular edge may appear in both G^1 and G^2 . Let $F = E^1 \cup E^2$ and $m_{-1} = |F|$. The third phase is the graph process $H_i = ([n], F_i), i = m_{-1}, \ldots, m_1$ where $F_{m_{-1}} = F$ and F_{i+1} is the union of F_i and the set containing a single edge chosen uniformly at random from $\binom{n}{2} \setminus F_i$. In other words, in the third phase we start with the collection of edges generated in phases 1 and 2 and then add new edges one at time until m_1 edges have been placed. Note that for $m_a + m_b \le i \le m_1$ the graphs G_i and H_i are identically distributed.

We henceforth assume

(6)
$$m_a + m_b \le \tau_1 \le m_1$$
.

We will show that

(7)
$$(6) \Rightarrow \mathbf{whp} \ G_{\tau_1} \ \text{has a } (K_t, 2)\text{-vertex-cover.}$$

We stress that we do not condition on the value τ_1 in any way (i.e. we work with the probability space described above); rather, we give an argument that depends only on the properties of the graphs G^1 and G^2 , which are subgraphs of G_{τ_1} , the properties of G_{m_1} , which contains G_{τ_1} , and the fact that every vertex in G_{τ_1} is contained in a copy of K_t . In fact, what follows actually shows (with only trivial modifications) that **whp** every graph G_m in the sequence $G_{m_a+m_b}, \ldots, G_{m_1}$ has a $(K_t, 2)$ -vertex-cover that covers all vertices that are contained in a copy of K_t . Clearly, Theorem 2 follows from (7) and Lemma 1.

How do we construct the $(K_t, 2)$ -vertex-cover? We first use the phase one edges to greedily cover as many vertices as possible with vertex disjoint K_t 's. Let Ξ be an arbitrary maximal collection of vertex disjoint K_t 's in G^1 , $X \subseteq [n]$ be the set of vertices not covered by Ξ , and

$$r = \left\lceil \frac{n}{(\log n)^{1/t}} \right\rceil.$$

Remark 3. We can easily randomize this choice of K_t 's so that X is a random |X|-subset of [n]. This will be used in the proof of Lemma 4.

Lemma 2. Let $G = G_{n,m_a}$.

 $\mathbf{Pr}(\exists R \subset [n] \text{ such that } |R| = r \text{ and } G[R] \text{ contains no } K_t$'s) = o(1).

It follows from Lemma 2 that whp

$$(8) |X| \le r.$$

In other words, after using only a small fraction of the edges in G_{τ_1} , only o(n) vertices remain to be covered. We will use the phase 2 edges (as well as a handful of the phase 1 and phase 3 edges) to form a vertex disjoint collection of K_t 's that covers X but does not use any edge in $E(\Xi)$.

Before describing the vertex disjoint collection of K_t 's that covers X, we make further definitions and preliminary observations. Our first observation concerns the random graph process G_{m_1} alone. Let $\nu_3 = 4$, $\nu_4 = 3$ and $\nu_i = 2$ for $i = 5, 6, \ldots$ We define a *cluster* to be a collection $\mathcal{C} = \{S_1, \ldots, S_l\}$ of K_t 's in G_{m_1} such that $l \leq 2\nu_t$

$$\kappa_i \ge 1 \quad \text{for} \quad i = 2, \dots, l$$

$$\kappa_i = t \quad \Rightarrow \quad \kappa_{i-1} = 1 \quad \land \quad |S_i \cap S_{i-1}| \ge 2$$
and
$$|\{i : \kappa_i \ne 1\}| = \nu_t$$

where

$$\kappa_i = \left| S_i \cap \left(\bigcup_{j=1}^{i-1} S_j \right) \right| \quad \text{for} \quad i = 2, \dots, l.$$

Note the order of the K_t 's in a cluster is important: we think of a cluster as being 'built' one K_t at a time. Roughly speaking, a cluster is a very small collection of K_t 's that have many or large pairwise intersections.

Lemma 3.

$$\mathbf{Pr}(G_{m_1} \text{ contains a cluster}) = o(1).$$

We now turn our attention to the graph G^2 . For $v \in [n]$ let Υ_v be the collection of K_t 's in G^2 that contain v; to be precise,

$$\Upsilon_v = \left\{ S \in {[n] \choose t} : v \in S \text{ and } {S \choose 2} \subseteq E^2 \right\}.$$

Since Υ_v depends only on the graph G^2 while X is small and depends only on the graph G^1 , it is usually the case that no $V(\Upsilon_v)$ contains many members of X— see (5) for explanation of notation. To make this statement precise, we let

$$q = \left\lceil \frac{\log n}{\log \log \log n} \right\rceil.$$

Lemma 4.

$$\mathbf{Pr}(\exists v \in [n] \text{ such that } |V(\Upsilon_v) \cap X| > q) = o(1).$$

We say that

$$v \in [n]$$
 is large if $|\Upsilon_v| \ge \frac{\log n}{20}$, and $v \in [n]$ is small if $|\Upsilon_v| < \frac{\log n}{20}$.

With high probability the small vertices are, with respect to connections via K_t 's, far apart. To make this statement precise, we define a *chain* to be a pair u, v of distinct small vertices and a collection $S_1, S_2, S_3, S_4 \in \binom{[n]}{t}$ of (not necessarily distinct) sets such that $u \in S_1$, $v \in S_4$,

$$S_1 \cap S_2, S_2 \cap S_3, S_3 \cap S_4 \neq \emptyset$$
, and $\binom{S_i}{2} \subseteq E(G_{m_1})$ for $i = 1, 2, 3, 4$.

Lemma 5.

$$\mathbf{Pr}(G_{m_1} \text{ contains a chain}) = o(1).$$

We also show that **whp** every K_t containing a small vertex intersects every other K_t in at most one vertex. A link is a small vertex $u \in [n]$ and distinct $S_1, S_2 \in \binom{[n]}{t}$ such that $u \in S_1, |S_1 \cap S_2| \ge 2$, and $\binom{S_1}{2}, \binom{S_2}{2} \subseteq E(G_{m_1})$.

Lemma 6.

$$\mathbf{Pr}(G_{m_1} \text{ contains a link}) = o(1).$$

Finally, let

$$X_1 = \{v \in X : v \text{ is small}\},$$

$$X_2 = \{v \in X : v \text{ is large}\}, \text{ and}$$

$$\Phi = \left\{S \in \binom{[n]}{t} : \binom{S}{2} \subseteq E(G_{m_1}) \text{ and } S \cap X_1 \neq \emptyset\right\}.$$

We are now prepared to describe the remainder of the $(K_t, 2)$ -vertex-cover. We henceforth assume (kUz8),

- (9) G_{m_1} does not contain a cluster,
- (10) $\forall v \in [n] \quad |V(\Upsilon_v) \cap X| \le q,$
- (11) G_{m_1} does not contain a chain,
- (12) G_{m_1} does not contain a link,

and that n is sufficiently large (in a sense that is made clear below). We will show that there exist collections Ξ_1 and Ξ_2 of vertex disjoint K_t 's in G_m such that $\Xi_1 \cup \Xi_2$ covers $X_1 \cup X_2$ and

(13)
$$V(\Xi_1) \cap V(\Xi_2) = \emptyset \text{ and } E(\Xi) \cap E(\Xi_1 \cup \Xi_2) = \emptyset.$$

If follows from Lemmas 1, 2, 3, 4, 5 and 6 that (13) implies Theorem 2.

We cover X_1 in a rather crude way. Let Ξ_1 be an arbitrary collection of K_t 's in G_{τ_1} that covers X_1 . Note that the collection Ξ_1 uses edges from all 3 phases and that we make use of the fact that every vertex is contained in some K_t in G_{τ_1} when forming Ξ_1 . By (11), Ξ_1 is vertex disjoint.

We cover

$$X_2' := X_2 \setminus V(\Xi_1)$$

in a more sophisticated way: we apply the Lovász Local Lemma. We first 'trim' the Υ_v 's. For $v \in X_2'$ let Υ_v' be the collection of sets in $S \in \Upsilon_v$ such that

(14)
$$S \cap X = \{v\}$$

$$T \in {\binom{[n]}{t}} \wedge {\binom{T}{2}} \subseteq E(G_{m_1}) \Rightarrow |S \cap T| \leq 1, \quad \text{and} \quad S \cap V(\Phi) \subseteq \{v\}.$$

In words, we get Υ'_v from Υ_v by throwing away those sets in Υ_v that contain an element of X other than v, intersect another K_t in more than one vertex, or contain a vertex of a K_t that contains a small vertex. By (10) there are at most q sets in Υ_v that contain an element of X other than v. We will show:

There are
$$\leq \binom{2\nu_t t}{t}$$
 sets in Υ_v that intersect another K_t in ≥ 2 vertices.

By (11) at most one set in Υ_v intersects $V(\Phi)$. Therefore, we may choose $\Theta_v \subseteq \Upsilon'_v$ such that

(16)
$$|\Theta_v| = \left\lceil \frac{\log n}{21} \right\rceil \quad \text{for all} \quad v \in X_2'.$$

Proof of (15). Let \hat{T}_v denote the collection of K_t 's in \hat{T}_v which intersect another K_t in more than one vertex. Let $B = V(\hat{T}_v)$. We construct copies X_1, X_2, \ldots, X_l of K_t in G_{m_1} as follows: Suppose we have constructed X_1, X_2, \ldots, X_k . Either (i) $B \subseteq V_k = V(X_1 \cup X_2 \cup \cdots \cup X_k)$ or (ii) $B \not\subseteq V_k$. In case (ii) choose $X_{k+1} \in \hat{T}_v$ which is not contained in V_k . If $|X_{k+1} \cap V_k| = 1$ then choose X_{k+2} where $|X_{k+2} \cap X_{k+1}| \geq 2$. If this process continues for ν_t iterations we will have produced a cluster. Thus $l \leq 2\nu_t$ and $|B| \leq 2t\nu_t$, which implies (15).

Now, consider the probability space in which each $v \in X_2'$ chooses $S_v \in \Theta_v$ uniformly at random and independently of the other vertices. For $u \neq v \in X_2', S \in \Theta_u$ and $T \in \Theta_v$ such that $S \cap T \neq \emptyset$ let $A_{u,v,S,T}$ be the event that $S_u = S$ and $S_v = T$. These are the 'bad' events in our application of the Lovász Local Lemma. Clearly,

(17)
$$\mathbf{Pr}(A_{u,v,S,T}) = \frac{1}{|\Theta_v||\Theta_u|} \le \left(\frac{21}{\log n}\right)^2 =: p.$$

Events A_{u_1,u_2,S_1,S_2} and A_{v_1,v_2,T_1,T_2} are dependent if and only if

$$\{u_1, u_2\} \cap \{v_1, v_2\} \neq \emptyset.$$

Thus, the degree in the dependency graph is bounded above by

$$d := 2 \max_{u \in X_2'} \sum_{S \in \Theta_u} \sum_{v \in X_2'} |\{T \in \Theta_v : S \cap T \neq \emptyset\}|$$

$$\leq 2 \max_{u \in X_2'} \sum_{w \in V(\Theta_u)} |\Upsilon_w \cap X|$$

$$\leq 2tq \left\lceil \frac{\log n}{21} \right\rceil \qquad \text{by (10)}$$

$$\leq \frac{t(\log n)^2}{10 \log \log \log n}.$$

It follows from (17) and (18) that

$$pd \le \frac{45t}{\log\log\log n} = o(1).$$

Thus, for n sufficiently large, it follows from the Lovász Local Lemma that there exists a vertex disjoint collection Ξ_2 of K_t 's in G^2 that covers X_2' but covers no vertex in $V(\Xi_1)$.

It remains to show that

$$E(\Xi) \cap E(\Xi_1 \cup \Xi_2) = \emptyset.$$

This is an immediate consequence of (12) and (14). We have established (13) and completed the proof.

2.1. Proof of Lemma 1

Let $p_i = m_i/\binom{n}{2}$ for i = 0, 1. We use a result of Ruciński [17] and Spencer [18]. We quote Theorem 3.22(i) of Janson, Łuczak and Ruciński [12], after specialising to K_t : Let \mathcal{C}_t be the property that every vertex of a graph is contained in a copy of K_t .

Theorem 7. Let $p = ((t-1)!(\log n + c_n))^{1/\binom{t}{2}} n^{-2/t}$. Then

$$\lim_{n \to \infty} \mathbf{Pr}(G_{n,p} \in \mathcal{C}_t) = \begin{cases} 0 & c_n \to -\infty \\ e^{-e^{-c}} & c_n \to c \\ 1 & c_n \to +\infty \end{cases}$$

The lemma follows immediately.

2.2. Proof of Lemma 2

Let $p_a = m_a/\binom{n}{2}$ and consider the random graph $G = G_{n,p_a}$. For $S \in \binom{[n]}{t}$ let B_S be the event that the induced graph G[S] is complete. For R a fixed subset of [n] such that

$$|R| = r = \left\lceil \frac{n}{(\log n)^{1/t}} \right\rceil$$

let the random variable X_R be the number of copies of K_t contained in R. We clearly have

$$\mu := \mathbf{E}[X_R]$$

$$= \sum_{S \in \binom{R}{t}} \mathbf{Pr}(B_S)$$

$$= \binom{r}{t} p_a^{\binom{t}{2}}$$

$$= \binom{r}{t} \frac{\alpha^{\binom{t}{2}}(t-1)! \log n}{n^{t-1}}$$

$$= \frac{r^t}{t!} (1 + O(1/r)) \frac{\alpha^{\binom{t}{2}}(t-1)!}{n^{t-1}} \log n$$

$$= \Omega(n)$$

We apply Janson's inequality (again, we follow the notation of [1]) to show that $\mathbf{Pr}(X_R=0)$ is small. In order to do so, we must bound the parameter Δ .

$$\Delta = \sum_{S,T \in \binom{R}{t}: 2 \le |S \cap T| \le t-1} \mathbf{Pr}(B_S \wedge B_T)
= \binom{r}{t} \sum_{i=2}^{t-1} \binom{t}{i} \binom{r-t}{t-i} p_a^{2\binom{t}{2} - \binom{i}{2}}
= \sum_{i=2}^{t-1} O\left(n^{2t-i-\frac{2}{t}} \binom{2\binom{t}{2} - \binom{i}{2}}{t} + o(1)\right)
= \sum_{i=2}^{t-1} O\left(n^{2+\frac{i(i-1)}{t} - i + o(1)}\right)
= O\left(n^{2/t + o(1)}\right).$$

Thus, Janson's inequality gives

$$\Pr(X_R = 0) < e^{-c_1 n}$$

where c_1 is a positive constant. Applying the first moment method, we have

$$\Pr\left(\bigvee_{R\in\binom{[n]}{r}} \{X_R = 0\}\right) \le \binom{n}{r} e^{-c_1 n}$$

$$\le \left(\frac{ne}{r}\right)^r e^{-c_1 n}$$

$$= \exp\left\{r\left(1 + \frac{\log\log n}{t}\right) - c_1 n\right\}$$

$$= o(1)$$

Since this event is monotone, the same holds for G_{n,m_a} .

2.3. Proof of Lemma 3

Let $C = \{S_1, \ldots, S_l\}$ be a fixed collection of K_t 's in K_n such that $l \leq 2\nu_t$

(19)
$$\kappa_{i} \geq 1 \quad \text{for} \quad i = 2, \dots, l$$

$$\kappa_{i} = t \quad \Rightarrow \quad \kappa_{i-1} = 1 \quad \land \quad |S_{i} \cap S_{i-1}| \geq 2$$

$$\text{and} \quad |\{i : \kappa_{i} \neq 1\}| = \nu_{t}$$

where

$$\kappa_i = \left| S_i \cap \left(\bigcup_{j=1}^{i-1} S_j \right) \right| \quad \text{for} \quad i = 2, \dots, l.$$

Let $a = |V(\mathcal{C})|$ and $b = |E(\mathcal{C})|$.

Claim 1.

$$a - \frac{2b}{t} < -\frac{1}{t}$$

Proof. We observe this difference as we 'build' the collection \mathcal{C} one K_t at a time. For $j=1,\ldots,l$ let $\mathcal{C}_j=\{S_1,\ldots,S_j\},\ a_j=|V(\mathcal{C}_j)|,\ b_j=|E(\mathcal{C}_j)|$ and $d_j=a_j-2b_j/t$. Note that

$$d_1 = 1$$
,

and

$$(21) \quad d_{i+1} - d_i \le (t - \kappa_{i+1}) - \frac{2}{t} \left(\begin{pmatrix} t \\ 2 \end{pmatrix} - \begin{pmatrix} \kappa_{i+1} \\ 2 \end{pmatrix} \right) = (\kappa_{i+1} - 1) \left(\frac{\kappa_{i+1}}{t} - 1 \right).$$

Thus

(22)
$$\kappa_{i+1} = 1 \implies d_{i+1} - d_i = 0$$

$$2 \le \kappa_{i+1} \le t - 1 \implies d_{i+1} - d_i \le \frac{2}{t} - 1.$$

Furthermore, it follows from (19) that

(23)
$$\kappa_{i+1} = t \Rightarrow b_{i+1} \ge b_i + t - 2 \Rightarrow d_{i+1} - d_i \le -\frac{2(t-2)}{t}$$
.

Since (by (22) and (23)) the difference $a_i - 2b_i/t$ decreases by at least 1 - 2/t whenever $\kappa_{i+1} \neq 1$, it follows from (20) that $a - 2b/t = d_l < -1/t$.

Let \mathcal{E}_i be the event that there exists a cluster in G_{m_1} with a vertex set of cardinality i, and let b_i be the minimum number of edges in a cluster on i vertices. With $p_{m_1} = m_1/\binom{n}{2}$ we have

$$\mathbf{Pr}(\mathcal{E}_i) \le \binom{n}{i} 2^{\binom{i}{t}} p_{m_1}^{b_i}$$
$$= O\left(n^{i - \frac{2b_i}{t} + o(1)}\right)$$
$$= O(n^{-\frac{1}{t} + o(1)}).$$

The lemma then follows from the fact that the cardinality of the vertex set of a cluster is at most $2\nu_t t$, a constant depending only on t.

2.4. Proof of Lemma 4

We first argue that **whp**

(24)
$$|\Upsilon_v| \le 4\log n \quad \text{for all } v \in [n].$$

We can calculate in G_{n,p_b} where $p_b = m_b/N$, $N = \binom{n}{2}$ and then use monotonicity to translate the result to G^2 . It follows from (15) that **whp** after removing O(1) K_t 's from Υ_v we have a collection $\tilde{\Upsilon}_v$ of K_t 's which have no vertex in common but v. So in G_{n,p_b}

$$\mathbf{Pr}(|\tilde{\Upsilon}_v| \ge \kappa = 3.9 \log n) \le \frac{\binom{n-1}{t-1}^{\kappa}}{\kappa!} p_b^{\kappa \binom{t}{2}} \le \frac{(\log n)^{\kappa}}{\kappa!} \le (e/3.9)^{3.9 \log n} = o(n^{-3/2}).$$

This verifies (24).

Now fix a vertex v. Then $|V(\Upsilon_v)| < 4t \log n$ and $|X| \le r$. Also, X and $V(\Upsilon_v)$ are chosen independently. It follows from this and Remark 3 that

$$\mathbf{Pr}(|V(\Upsilon_v) \cap X| \ge q) \le \frac{\binom{4t \log n}{q} \binom{n-q}{r-q}}{\binom{n}{r}}$$

$$\le \left(\frac{4ter \log n}{qn}\right)^q$$

$$\le \left(\frac{4te \log \log \log n \log n}{(\log n)^{(t+1)/t}}\right)^{\log n/\log \log \log n}$$

$$= O(n^{-A})$$

for any constant A > 0.

There are n choices for v and the lemma follows.

2.5. Proof of Lemmas 5 and 6

Let

$$p = ((t-1)! \log n)^{1/\binom{t}{2}} n^{-2/t}$$
 and $p_{m_1} = \frac{m_1}{\binom{n}{2}}$.

The main work of this section is the following claim.

Claim 2. Let H = (A, B) be a fixed graph whose vertex set A is a subset of [n], and let $x, y \in A$ be distinct fixed vertices. If b := |B| and $a := |A| \le 4t$ then

- 1. $\mathbf{Pr}((x \text{ is small }) \land (H \subseteq G_{m_1})) = O(p_{m_1}^b n^{-3/4})$
- 2. $\Pr((x \text{ and } y \text{ are small}) \land (H \subseteq G_{m_1})) = O(p_{m_1}^b n^{-3/2})$

Proof. We only prove 2; the proof of 1 is both similar and easier. Let \mathcal{R}_x be the event that x is small, \mathcal{R}_y be the event that y is small, and let \mathcal{R}_H be the event $B \subseteq E(G_{m_1})$. Furthermore, let

$$N_x = \{v \in [n] : x \sim_{G^2} v\} \setminus A \quad \text{and} \quad N_y = \{v \in [n] : y \sim_{G^2} v\} \setminus (A \cup N_x),$$

 G_x be the induced graph $G^2[N_x]$, and $G_y = G^2[N_y]$. Finally, let $\epsilon > 0$ be a constant such that

(25)
$$\beta + \epsilon < 1 \text{ and } (\beta - \epsilon)^{\binom{t}{2}} \ge \frac{3}{4} + \frac{1}{20}(1 + \log 20).$$

Case 1. t=3

We condition on the event that N_x and N_y are of nearly the expected size. Let \mathcal{R}_1 be the event that

(26)
$$(\beta - \epsilon)np \le |N_x|, |N_y| \le (\beta + \epsilon)np,$$

and \mathcal{R}_2 be the event that

(27)
$$|E(G_x)|, |E(G_y)| \le \frac{\log n}{20}.$$

We have

(28)
$$\mathbf{Pr}(\mathcal{R}_H \wedge \mathcal{R}_x \wedge \mathcal{R}_y) \leq \mathbf{Pr}(\mathcal{R}_2 | \mathcal{R}_1 \wedge \mathcal{R}_H) \mathbf{Pr}(\mathcal{R}_H) + \mathbf{Pr}(\overline{\mathcal{R}_1}).$$

Now the Chernoff bounds show that in $G_{n,p_{m_1}}$ we have

(29)
$$\mathbf{Pr}(\bar{\mathcal{R}}_1) = O(\exp\{-n^{1-\frac{2}{t}+o(1)}\}),$$

and we can inflate this by O(n) to show the same for G_{m_1} . Then, where $N = \binom{n}{2}$

$$\mathbf{Pr}(\mathcal{R}_H) \le {\binom{a \choose 2}{b}} {\binom{N-b}{m_1-b}} / {\binom{N}{m_1}}$$

$$= O(p_{m_1}^b).$$

To bound $\mathbf{Pr}(\mathcal{R}_2)$ we condition on $N_x = S, N_y = T$ satisfying (26), where S, T are fixed subsets of [n]. Now let $\hat{\mathcal{R}}_2$ denote the event

$$|E(S)|, |E(T)| \le \frac{\log n}{20}.$$

We show that for $\gamma \geq \beta - \epsilon$, in $G_{n,\gamma p}$ we have

(31)
$$\mathbf{Pr}_{\gamma p}(\hat{\mathcal{R}}_2) = O(n^{-3/2}).$$

The monotonicity of $\hat{\mathcal{R}}_2$ plus the concentration of the number of edges of $G_{n,\gamma p}$ around γNp then allows us to assert (31) for G^2 . Indeed, then

$$O(n^{-3/2}) = \mathbf{Pr}_{\gamma p}(\hat{\mathcal{R}}_2) = \sum_{m} \binom{N}{m} (\gamma p)^m (1 - \gamma p)^{N-m} \mathbf{Pr}_m(\hat{\mathcal{R}}_2)$$

and so taking $\beta - \epsilon \leq \gamma$ we see that if $\mathbf{Pr}_{m_1}(\hat{\mathcal{R}}_2) \geq An^{-3/2}$ then $\mathbf{Pr}_{\gamma p}(\hat{\mathcal{R}}_2) \geq An^{-3/2}/2$.

The random variable $X = |E(G_x)|$ (in $G_{n,\gamma p}$) is a binomial random variable B(s,p) where $s = {|S| \choose 2}$, having mean μ where

$$(\beta - \epsilon)^3 \log n < \mu < (\beta + \epsilon)^3 \log n.$$

So,

$$\mathbf{Pr}_{\gamma p}\left(X \le \frac{\log n}{20}\right) \le \sum_{l=0}^{\left\lfloor \frac{\log n}{20}\right\rfloor} \binom{s}{l} (\gamma p)^l (1 - \gamma p)^{s-l}$$

$$\le (1 + o(1)) \sum_{l=0}^{\left\lfloor \frac{\log n}{20}\right\rfloor} e^{-\mu} \frac{\mu^l}{l!}$$

$$\le 2e^{-\mu} \frac{\mu^{\left\lfloor \frac{\log n}{20}\right\rfloor}}{\left\lfloor \frac{\log n}{20}\right\rfloor!}$$

$$\le 3 \exp\left\{-\log n \left((\beta - \epsilon)^3 - \frac{1}{20}(1 + \log 20)\right)\right\}$$

$$\le 3n^{-3/4}$$

We apply the same argument to $|E(G_y)|$ (adding the appropriate conditioning on the number of edges within N_y). The proof now follows from (28)–(31).

Case 2. $t \ge 4$

We bound $\mathbf{Pr}(\mathcal{R}_x \wedge \mathcal{R}_y \wedge \mathcal{R}_H)$ by conditioning on the event that the neighborhoods of x and y are of nearly the expected size and have nearly the expected number of edges. Let \mathcal{R}_3 is the event that

$$(\beta - \epsilon)pn \le |N_x|, |N_y| \le (\beta + \epsilon)pn,$$

$$(\beta - \epsilon)p\binom{|N_x|}{2} \le |E(G_x)| \le (\beta + \epsilon)p\binom{|N_x|}{2}, \text{ and}$$

$$(\beta - \epsilon)p\binom{|N_y|}{2} \le |E(G_y)| \le (\beta + \epsilon)p\binom{|N_y|}{2}.$$

Let \mathcal{R}_4 be the event that both G_x and G_y contain fewer than $\frac{\log n}{20}$ copies of K_{t-1} . We now bound the probability of $\mathcal{R}_x \wedge \mathcal{R}_y \wedge \mathcal{R}_H$ as follows:

(32)
$$\mathbf{Pr}(\mathcal{R}_x \wedge \mathcal{R}_y \wedge \mathcal{R}_H) \leq \mathbf{Pr}(\mathcal{R}_4 | \mathcal{R}_H \wedge \mathcal{R}_3) \mathbf{Pr}(\mathcal{R}_H) + \mathbf{Pr}(\overline{\mathcal{R}_3})$$

$$\leq \mathbf{Pr}(\mathcal{R}_4 | \mathcal{R}_H \wedge \mathcal{R}_3) O(p_{m_1}^b) + O(\exp\{-n^{1-\frac{2}{t} + o(1)}\}).$$

We bound $\mathbf{Pr}(\mathcal{R}_4|\mathcal{R}_H \wedge \mathcal{R}_3)$ by an application of the Poisson approximation on the number of K_t 's in the random graph $G_{n,m}$ given by Theorem 6.1 of [9, page 68]. We let n' and m' be integers satisfying

(33)
$$(\beta - \epsilon)pn \le n' \le (\beta + \epsilon)pn, \text{ and }$$

$$(34) \qquad (\beta - \epsilon)p\binom{n'}{2} \le m' \le (\beta + \epsilon)p\binom{n'}{2},$$

and condition on the event that $|N_x| = n'$ and $|E(G_x)| = m'$. Note that under this conditioning G_x can be viewed as the random graph $G_{n',m'}$. Following the notation of [9], we have

$$\frac{1}{2}(n')^{2-\frac{2}{t-2}}\omega_1 \le m' \le \frac{1}{2}(n')^{2-\frac{2}{t-2}}\omega_2$$

where

$$\omega_1 = (\beta - \epsilon)^{\frac{t}{t-2}} ((t-1)! \log n)^{1/\binom{t-1}{2}}$$

and

$$\omega_2 = (\beta + \epsilon)^{\frac{t}{t-2}} ((t-1)! \log n)^{1/\binom{t-1}{2}}.$$

Let $X = X_{K_t}$ be the number of copies of K_t in $G_{n',m'}$. The expected number of such K_t 's, $\lambda := \mathbb{E}[X]$, is then bounded as follows:

$$(\beta - \epsilon)^{\binom{t}{2}} \log n \le \lambda \le (\beta + \epsilon)^{\binom{t}{2}} \log n.$$

It then follows from Theorem 6.1 of [9] that

$$\Pr\left(X \le \frac{\log n}{20}\right) \le (1 + o(1)) \sum_{k=0}^{\lfloor \frac{\log n}{20} \rfloor} e^{-\lambda} \frac{\lambda^k}{k!}$$

$$\le 2e^{-\lambda} \frac{\lambda^{\lfloor \frac{\log n}{20} \rfloor}}{\lfloor \frac{\log n}{20} \rfloor!}$$

$$\le 2e^{-\lambda} \left(\frac{20e\lambda}{\log n}\right)^{\frac{\log n}{20}}$$

$$\le 2\exp\left\{-(\beta - \epsilon)^{\binom{t}{2}}\log n\right\} (20e)^{\frac{\log n}{20}}$$

$$= 2\exp\left\{-\log n\left((\beta - \epsilon)^{\binom{t}{2}} - \frac{1}{20}(1 + \log 20)\right)\right\}$$

$$\le 2n^{-3/4}$$

With (32) this completes the proof.

Proof of Lemma 5. Let S_1 be the event that there is a chain in G_{m_1} . For a fixed collection A of K_t 's in K_n and distinct $u, v \in [n]$ which define a possible chain, it follows from an argument along the line of the proof of Claim 1 that

$$|V(\mathcal{A})| \le 1 + \frac{2|E(\mathcal{A})|}{t}$$

and it follows from Claim 2 that

$$\mathbf{Pr}\left((u \text{ and } v \text{ are small }) \wedge E(\mathcal{A}) \subseteq E(G_{m_1})\right) \leq O(p_{m_1}^{|E(\mathcal{A})|} n^{-3/2}).$$

Applying the first moment method we have

$$\mathbf{Pr}(S_1) \le \binom{n}{2} \sum_{i=t}^{4t-3} \binom{n-2}{i-2} 2^{\binom{i}{t}} O(p_{m_1}^{\frac{(i-1)t}{2}} n^{-3/2})$$

$$\le \sum_{i=t}^{4t-3} O(n^{i-\frac{2}{t}\frac{(i-1)t}{2} - \frac{3}{2} + o(1)})$$

$$\le \sum_{i=t}^{4t-3} O(n^{-\frac{1}{2} + o(1)})$$

$$= o(1)$$

Proof of Lemma 6. Let S_2 be the event that there is a link in G_{m_1} . For fixed $S, T \in {[n] \choose t}$ such that $|S \cap T| \ge 2$ and $x \in S \cup T$ it follows from Claim 2 that

$$\mathbf{Pr}\left((x \text{ is small }) \land \binom{S}{2} \cup \binom{T}{2} \subseteq E(G_{m_1})\right) = O(p_{m_1}^{\binom{t}{2} - \binom{|S \cap T|}{2}} n^{-3/4}).$$

Applying the first moment method we have

$$\mathbf{Pr}(S_2) \le n \binom{n-1}{t-1} \sum_{i=2}^{t-1} \binom{t}{i} \binom{n-t}{t-i} O(p_{m_1}^{2\binom{t}{2} - \binom{i}{2}} n^{-3/4})$$

$$\le \sum_{i=2}^{t-1} O(n^{2t-i-2(t-1) + \frac{2}{t}\binom{i}{2} - \frac{3}{4} + o(1)})$$

$$\le \sum_{i=2}^{t-1} O(n^{\frac{5}{4} - i + \frac{i(i-1)}{t} + o(1)})$$

$$= o(1)$$

3. Proof of Theorem 1.

In view of Theorem 2 we need only prove that

(35)
$$\lim_{n \to \infty} \mathbf{Pr}(G_{n,m} \in \mathcal{C}_t) = \begin{cases} 0 & c_n \to -\infty \\ e^{-e^{-c}} & c_n \to c \\ 1 & c_n \to \infty \end{cases}$$

Using Theorem 2 of Łuczak [16] we can derive (35) directly from Theorem 7. \blacksquare

4. Proofs of Theorems 4–6

We prove Theorem 4 via an application of the following theorem of Hajnal and Szemerédi. For $k \leq n$ the Turán graph $T_k(n)$ is the complete k-partite graph on n vertices where the parts in the vertex partition have cardinalities

$$\left|\frac{n}{k}\right|, \left|\frac{n+1}{k}\right|, \ldots, \left|\frac{n+k-1}{k}\right|.$$

In other words, the parts in the partition are as near as possible to being equal (i.e. the partition is a so-called *equipartition*). Below we use the following theorem proved by Hajnal and Szemerédi (cf. Theorem 3).

Theorem 8 (Hajnal, Szemerédi). If G is a graph on n vertices having maximum degree $\Delta(G) = \Delta$ then

$$G \subseteq T_{\Delta+1}(n)$$
.

For a graph G, let \overline{G} be the complement of G. It is easy to see that Theorem 8 is equivalent to

Theorem 9. If G is a graph on n vertices having minimum degree $\delta(G) = \delta$ then

$$\overline{T_{n-\delta}(n)} \subseteq G.$$

Proof of Theorem 4. We establish the lower bound by example. Consider the complete t-partite graph on n vertices having parts V_1, \ldots, V_t such that $|V_1| = q$ and

$$|V_2|, \dots, |V_t| \in \left\{ lq + \left\lceil \frac{r}{t-1} \right\rceil, lq + \left\lfloor \frac{r}{t-1} \right\rfloor \right\}.$$

If q = 0 then G contains no t-clique and therefore has no (K_t, l) -vertex-cover. If q > 0 then, by the definition of r, there exists V_i such that $|V_i| > ql$, and G has no (K_t, l) -vertex-cover. Suppose G is a graph on n vertices having

$$\delta(G) \ge n - ql - \left\lceil \frac{r}{t-1} \right\rceil + 2.$$

Let

$$s = ql + \left\lceil \frac{r}{t-1} \right\rceil - 2.$$

It follows from Theorem 9 that $\overline{T_s(n)} \subseteq G$. In words, there exists an equipartition $V(G) = V_1 \cup \ldots \cup V_s$ such that the induced graph $G[V_i]$ is complete for $i = 1, \ldots s$. We will show that the collection of cliques $G[V_1], \ldots, G[V_s]$ can be transformed into a (K_t, l) -vertex-cover.

Claim 3.

$$t-1 \le |V_i| \le t \text{ for } i = 1, \dots, s.$$

Proof. We merely observe that s(t-1) < n while $st \ge n$.

$$\left[ql + \left\lceil \frac{r}{t-1} \right\rceil - 2 \right] (t-1) \le ql(t-1) + \left(\frac{r}{t-1} + 1 \right) (t-1) - 2(t-1)$$

$$\le ql(t-1) + r - (t-1)$$

On the other hand,

(36)
$$\left[ql + \left\lceil \frac{r}{t-1} \right\rceil - 2\right]t \ge \left[ql + \frac{r}{t-1} - 2\right]t$$

$$= n + q(l-1) + \frac{r}{t-1} - 2t.$$

Now, since $n \ge 6t^2 - 4t$, at least one of the following holds:

- $\bullet \ r \! \geq \! 2t(t-1)$
- $q \ge 2t$
- $q(t-1)l \ge 4t(t-1)$.

In any of these situations, the expression in (36) is greater than or equal to n.

If follows from Claim 3 that we may assume that for some m we have $|V_1| = \ldots = |V_m| = t - 1$ and $|V_{m+1}| = \ldots = |V_s| = t$.

Claim 4.

$$m < (l-1)(q+1).$$

Proof. Since V_1, \ldots, V_s is a partition, we must have (t-1)m + t(s-m) = n. However,

$$(t-1)(l-1)(q+1) + t \left[ql + \left\lceil \frac{r}{t-1} \right\rceil - 2 - (l-1)(q+1) \right]$$

$$= q[(t-1)l+1] + t \left\lceil \frac{r}{t-1} \right\rceil + 1 - l - 2t$$

$$\leq q[(t-1)l+1] + t \left(\frac{r}{t-1} + \frac{t-2}{t-1} \right) + 1 - l - 2t$$

$$\leq n + \frac{1}{t-1} + t \frac{t-2}{t-1} + 1 - 2t$$

$$= n - t$$

$$\leq n$$

We transform $G[V_1], \ldots, G[V_s]$ into a (K_t, l) -vertex-cover by expanding the clique V_i by one vertex for $i = 1, \ldots, m$. To be precise, we will show that there exist $x_1, \ldots, x_m \in V(G)$ such that

- 1. $x_i \sim v \quad \forall v \in V_i$,
- 2. $|\{x_i: x_i=v\}| \le l-1 \quad \forall v \in V(G),$
- $3. \ x_i \in V_j \Rightarrow x_j \not\in V_i,$
- 4. $x_i \notin V_i$.

Note that the third condition must be included to prevent two of the expanded cliques from containing a common edge. For $i=1,\ldots,m$ let

$$A_i = \{ v \in V(G) \setminus V_i : v \sim u \quad \forall u \in V_i \}$$

Claim 5. $|A_i| \ge q + t$ for $i = 1, \dots m$.

Proof. Since, for $v \in V_i$,

$$\begin{split} |\{x \in V(G) \setminus V_i : x \not\sim v\}| &\leq n - 1 - \delta(G) \\ &\leq ql + \left\lceil \frac{r}{t - 1} \right\rceil - 3, \end{split}$$

we have

$$\begin{aligned} |\{x \in V(G) \setminus V_i : \exists v \in V_i \text{ such that } x \not\sim v\}| \\ & \leq (t-1) \left[ql + \left\lceil \frac{r}{t-1} \right\rceil - 3 \right] \\ & \leq ql(t-1) + (t-1) \left(\frac{r}{t-1} + \frac{t-2}{t-1} \right) - 3(t-1) \\ & = ql(t-1) + r - 2t + 1. \end{aligned}$$

Therefore

$$|A_i| = |V(G) \setminus V_i| - |\{x \in V(G) \setminus V_i : \exists v \in V_i \text{ such that } x \not\sim v\}|$$

$$\geq n - (t - 1) - [ql(t - 1) + r - 2t + 1]$$

$$= q + t$$

Now, we choose the x_i 's one at a time in an order $x_1 = x_{i_1}, x_{i_2}, \dots, x_{i_m}$ as follows. Suppose x_{i_1}, \dots, x_{i_k} have been chosen.

(37) If
$$x_{i_k} \in V_j$$
 and $j \notin \{i_1, \ldots, i_k\}$ then $j = i_{k+1}$.

Otherwise i_{k+1} is chosen arbitrarily from $\{j: 1 \le j \le m\} \setminus \{i_1, \ldots, i_k\}$. In other words, we chose the x_i 's in an order such that at most one x_i falls in V_j before x_j is chosen. For $k = 1, \ldots, m$ let

$$U_k = \{ v \in V(G) : |\{1 \le j < k : x_{i_j} = v\}| = l - 1 \}.$$

In words, U_k is the set of vertices that satisfy condition 2 with equality after $x_{i_1}, \ldots, x_{i_{k-1}}$ have been determined. Thus, we must have $x_{i_k} \notin U_k$. By Claim 4

$$|U_k| \le \left\lfloor \frac{m-1}{l-1} \right\rfloor < q+1.$$

For $k=1,\ldots,m$ let

$$R_k = \bigcup_{1 \le j < k : x_{i_j} \in V_k} V_{i_j}.$$

(Note that the union here is over zero or one set only). By condition 3 we must have $x_{i_k} \notin R_k$. By the construction of the ordering given in (37),

$$(39) |R_k| \le t - 1.$$

An arbitrary $x_{i_k} \in (A_{i_k} \setminus U_k) \setminus R_k$ satisfies 1, 2, and 3. By (38), (39) and Claim 5 such an element exists.

Proof of Theorem 6. Let $\epsilon > 0$ and let G be a graph on n vertices with $\delta(G) = \delta \ge (1 - \frac{1}{\chi(H) - 1} + \epsilon)n$. We show that any collection of edge disjoint copies of H that does not cover V(G) can be extended to cover at least one new vertex. To be precise, we show that if a family $\mathcal{F} = \{\Gamma_1, \dots, \Gamma_m\}$ of copies of H in G and a vertex $v \in V(G)$ satisfy

(40)
$$m < n,$$

$$\Gamma_i = (V(\Gamma_i), E(\Gamma_i)) \text{ are copies of } H \text{ in } G \text{ for all } i,$$

$$E(\Gamma_i) \cap E(\Gamma_i) = \emptyset \text{ for all } i \neq j,$$

and

$$v \not\in \bigcup_{i=1}^m V(\Gamma_i)$$
,

then there exists a family $\mathcal{F}' = \{\Upsilon_1, \dots, \Upsilon_l\}$ such that for all i $\Upsilon_i = (V(\Upsilon_i), E(\Upsilon_i))$ are copies of H in G

(41)
$$E(\Upsilon_i) \cap E(\Upsilon_j) = \emptyset$$
 for all $i \neq j$

and

$$\bigcup_{i=1}^{l} V(\Upsilon_i) \supseteq \left(\bigcup_{i=1}^{m} V(\Gamma_i)\right) \cup \{v\}$$
.

Note that we include the possibility of m=0. Clearly, an inductive argument based on (40) and (41) above implies the theorem. Further, we may assume m < n in (40). Suppose, on the contrary, that we have a family $\mathcal{F}^* = \{\Gamma_1, \dots, \Gamma_m\}, m \geq n$, constructed inductively by (40) and (41) such that it does not cover all vertices. However, by the inductive construction of \mathcal{F}^* every vertex is already in some copy of H included in the family \mathcal{F}^* . A contradiction.

To proceed with the proof we need to establish some notational conventions. Let u be the vertex of H such that $\chi(H \setminus \{u\}) = \chi(H) - 1 =: \chi - 1$. Set $H' = H \setminus \{u\}$, h = |V(H)|, and $e_H = |E(H)|$. For \mathcal{F} and a vertex v as in (40), let N_v be the set of neighbors of v, $d_v = |N_v|$ and $F = \bigcup_{i=1}^m E(\Gamma_i)$. Our analysis will focus on the consideration of the subgraphs $L = G[N_v]$ and $L' = (N_v, E(L) \setminus F)$. We extend \mathcal{F} to \mathcal{F}' by simply finding a copy of H which contains v but no edges in F. Clearly, if there exists a copy of H' in L', then this H' together with v gives a copy of H that extends \mathcal{F} . (Note H' is a subgraph of $L = G[N_v]$).

We have for $|E(L)| \ge \frac{d_v}{2} \left(\delta - (n - d_v)\right)$. Since $\delta \ge \left(\frac{\chi - 2}{\chi - 1} + \epsilon\right) n$ is equivalent to $\delta - n \ge -\frac{1}{\chi - 2}\delta + \epsilon n\frac{\chi - 1}{\chi - 2}$, we get

$$|E(L)| \ge \frac{d_v}{2} \left(\delta - (n - d_v) \right)$$

$$\ge \frac{d_v}{2} \left(d_v - \frac{1}{\chi - 2} \delta + \epsilon n \frac{\chi - 1}{\chi - 2} \right)$$

$$\ge \frac{d_v^2}{2} \cdot \frac{\chi - 3}{\chi - 2} + \epsilon n \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2} .$$

Since we are assuming that $|\mathcal{F}| < n$, we have

$$|F \cap E(L)| \le |F| \le e_H n$$
,

and it follows

$$|E(L')| = |E(L)| - |F \cap E(L)|$$

$$\geq \frac{d_v^2}{2} \cdot \frac{\chi - 3}{\chi - 2} + \epsilon n \cdot \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2} - e_H n$$

$$\geq \binom{d_v}{2} \cdot \frac{\chi - 3}{\chi - 2} + \frac{1}{2} \epsilon \binom{d_v}{2} \frac{\chi - 1}{\chi - 2}$$

$$+ \left(\frac{1}{2} \epsilon \binom{d_v}{2} \frac{\chi - 1}{\chi - 2} + \frac{d_v}{2} \cdot \frac{\chi - 3}{\chi - 2} + \epsilon \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2} - e_H n\right).$$

Letting $\epsilon' = \frac{1}{2} \cdot \frac{\chi - 1}{\chi - 2} \cdot \epsilon$ and d_v be large enough (i.e. n large enough), we conclude that

$$\frac{1}{2}\epsilon \binom{d_v}{2}\frac{\chi-1}{\chi-2} + \frac{d_v}{2} \cdot \frac{\chi-3}{\chi-2} + \epsilon \frac{d_v}{2} \cdot \frac{\chi-1}{\chi-2} - e_H n \ge 0$$

and thus, $|E(L')| \ge \left(\frac{\chi-3}{\chi-2} + \epsilon'\right) {d_v \choose 2}$. By the Erdős - Stone theorem (see e.g. [6]) there exists a copy of H' in L'. Taking this copy of H' together with v and edges needed gives us a new copy of H by which we extend \mathcal{F} to \mathcal{F}' .

Proof of Theorem 5. We are going to determine the exact value of $f(n,3,k), k \geq \frac{n-1}{2}$ and $n \geq 6$. First, note that in any (K_3,∞) -vertex-cover of a graph G on n vertices no vertex lies in more than $\frac{n-1}{2}$ copies of K_3 . In order to get a tight result we assume G is a graph on n vertices with $\delta(G) \geq \lceil n/2 \rceil + 1$. Let $\mathcal{F} = \{\Gamma_1, \dots, \Gamma_m\}$ and v be as in (40) with $H = K_3$. We use the notation introduced in the proof of Theorem 6. Unlike in the proof of Theorem 6, in order to get a tight result it does not suffice to simply add

a new K_3 to \mathcal{F} . Our argument includes consideration of several different kinds of modifications of \mathcal{F} .

It follows from our minimal degree condition that

(42)
$$d_L(x) \ge 2$$
, for all $x \in N_v$.

If there is an edge in L not contained in $F = \bigcup_{i=1}^m E(\Gamma_i)$ then this edge together with v gives an extension of \mathcal{F} that contains v, and therefore we can assume

$$(43) E(L) \subset F.$$

It follows from (42) and (43) that $|F \cap E(L)| \ge d_v = |N_v|$, and therefore

(44)
$$3|\mathcal{F}_3| + |\mathcal{F}_2| \ge d_v \ge \frac{n}{2} + 1 ,$$

where $\mathcal{F}_j = \{\Gamma \in \mathcal{F} : |V(\Gamma) \cap V(L)| = j\}, j = 2, 3$. Since $H = K_3$, to simplify the description we identify $\Gamma \in \mathcal{F}$ with its vertex set, i.e. $\Gamma = \{x_1, x_2, x_3\}$. Consider $\Gamma_A = \{x_1, x_2, y\} \in \mathcal{F}_2$ with $x_1, x_2 \in N_v$ and $y \in V(G) \setminus (N_v \cup \{v\})$. If there exists $\Gamma_B \in \mathcal{F}, \Gamma_B \neq \Gamma_A$, such that $y \in \Gamma_B$ then $(\mathcal{F} \setminus \{\Gamma_A\}) \cup \{\{x_1, x_2, v\}\}$ is an extension of \mathcal{F} containing v. Therefore, we can assume

(45)
$$|\mathcal{F}_2| \le |V(G) \setminus (N_v \cup \{v\})| \le \frac{n}{2} - 2 ,$$

because otherwise there exists a pair $\Gamma_A, \Gamma_B \in \mathcal{F}, \Gamma_A = \{x_1, x_2, y\}, \Gamma_B = \{z_1, z_2, y\}$ as above. It follows from (44) and (45) that $|\mathcal{F}_3| \ge 1$. Now, consider $\Gamma_A \in \mathcal{F}_3$. If there exists $\Gamma_B \in \mathcal{F}$ such that $\Gamma_A \cap \Gamma_B = \{x\}$ then $(\mathcal{F} \cup \{\Gamma_A \setminus \{x\} \cup \{v\}\}) \setminus \{\Gamma_A\}$ is an extension of \mathcal{F} containing v. So, we can henceforth assume

(46)
$$\Gamma_A \in \mathcal{F}_3, \Gamma_B \in \mathcal{F} \Longrightarrow \Gamma_A \cap \Gamma_B = \emptyset.$$

Once again, we consider $\Gamma_A = \{x_1, x_2, x_3\} \in \mathcal{F}_3$. Since $d_G(x_i) \ge n/2 + 1 > 3$ (here we use our assumption on n) there exists $u \in V \setminus \{v, x_1, x_2, x_3\}$ and $a \ne b \in \{1, 2, 3\}$ such that u is adjacent to both x_a and x_b . Let $c \in \{1, 2, 3\} \setminus \{a, b\}$ and set

$$\mathcal{F}' = \mathcal{F} \setminus \{\Gamma_A\} \cup \{\{x_a, x_b, u\}, \{x_a, x_c, v\}\}.$$

By (46) the family \mathcal{F}' is edge-disjoint and covers v.

In order to prove the lower bound on f(n,3,k) we consider the following two graphs. If n=2m, H_n^e is the complete bipartite graph on the vertex set $Z_1 \cup Z_2, |Z_1| = |Z_2| = m$. In the case n=2m+1, H_n^o consists of the edges of the complete bipartite graph on the vertex set $Z_1 \cup Z_2, |Z_1| = m+1, |Z_2| = m$. Moreover, if $|Z_1|$ is even, H_n^o contains edges of a perfect matching of Z_1 and

in the case $|Z_1|$ is odd, H_n^o contains edges of a maximal matching, say M, of Z_1 together with a single edge $\{x,y\}$ where x is the vertex of Z_1 which does not belong to M and y is any vertex of $Z_1 \setminus \{x\}$. Clearly, $\delta(H_n^e) = \lceil n/2 \rceil$ and $\delta(H_n^o) = \lceil n/2 \rceil$. Further, neither of H_n^e and H_n^o contains a (K_3, ∞) -vertex-cover because H_n^e does not contain any copy of K_3 and H_n^o contains only at most $\lceil (n+1)/4 \rceil$ copies of K_3 .

Acknowledgement. We thank the referees for their careful reading of the manuscript which has led to several improvements in the presentation.

References

- [1] N. Alon, J. H. Spencer: The Probabilistic Method, John Wiley and Sons, 1991.
- [2] N. Alon, R. Yuster: Almost H-factors in dense graphs, Graphs and Combinatorics, 8 (1992), 95–102.
- [3] N. Alon, R. Yuster: Threshold functions for H-factors, Combinatorics, Probability and Computing, 2 (1993), 137–144.
- [4] N. Alon, R. Yuster: H-factors in dense graphs, J. Combin. Theory, Ser. B, 66 (1996), 269–282.
- [5] B. Bollobás: Random graphs, Academic press, 1985.
- [6] B. Bollobás: Extremal Graph Theory, LMS Monographs, No. 11, Academic Press 1978.
- [7] F. CHUNG, R. GRAHAM: Erdős on graphs—his legacy of unsolved problems, A. K. Peters, 1998.
- [8] P. Erdős and A. Rényi: On the existence of a factor of degree one of a connected random graph, *Acta Math. Acad. Sci. Hungar.*, **17** (1966) 359–368.
- [9] A. M. FRIEZE: On small subgraphs of random graphs, Proceedings of Random Graphs '89, (A. M. Frieze and T. Łuczak Eds.) John Wiley and Sons, 1992, 67–90.
- [10] A. HAJNAL, E. SZEMERÉDI: Proof of a conjecture of Erdős, Combin. Theory and Appl., II, Colloq. Math. Soc. J. Bolyai 4, North-Holland, 1970, 601–623.
- [11] S. Janson: Poisson approximation for large deviations, Random Structures and Algorithms, 1 (1990), 221–229.
- [12] S. JANSON, T. ŁUCZAK and A. RUCIŃSKI: Random Graphs, John Wiley and Sons, 2000.
- [13] M. Krivelevich: Triangle factors in random graphs, Combinatorics, Probability and Computing, 6 (1997), 337–347.
- [14] D. E. KNUTH, R. MOTWANI and B. G. PITTEL: Stable husbands, Random Structures and Algorithms, 1 (1990), 1–14.
- [15] J. KOMLÓS, G. N. SÁRKÖZY, E. SZEMERÉDI: Proof of the Alon-Yuster conjecture, in preparation.
- [16] T. Luczak: On the equivalence of two basic models of random graphs, In: Proceedings of Random Graphs '87 (M. Karoński, J. Jaworski and A. Ruciński, Eds.) John Wiley and Sons, 1990, 151–157.
- [17] A. RUCIŃSKI: Matching and covering the vertices of a random graph by copies of a given graph, *Discrete Math.*, 105 (1992), 185–197.

- [18] J. Spencer: Threshold functions for extension statements, J. Combin. Theory, Ser. A 53 (1990) 286–305.
- [19] N. C. WORMALD: The perturbation method and triangle-free random graphs, Random Structures and Algorithms, 9 (1996), 253–270.

Tom Bohman

Department of Mathematical Sciences, Carnegie Mellon University Pittsburgh, PA 15213, USA tbohman@andrew.cmu.edu

Miklós Ruszinkó

Department of Mathematical Sciences,
Carnegie Mellon University
Pittsburgh, PA 15213, USA
Permanent Address:
Computer and Automation
Research Institute
of the Hungarian Academy of Sciences,
Budapest, P.O.Box 63,
Hungary-1518.
ruszinko@lutra.sztaki.hu

Alan Frieze

Department of Mathematical Sciences, Carnegie Mellon University Pittsburgh, PA 15213, USA alan@random.math.cmu.edu

Lubos Thoma

Department of Mathematical Sciences, Carnegie Mellon University Pittsburgh, PA 15213, USA thoma@qwes.math.cmu.edu